22/06(a)

The University of Sydney

<u>CHEMISTRY 1B - CHEM1102</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2008

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 13, 15, 21 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

\backslash	Marks	
Pages	Max	Gained
2-8	29	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
9	4			
10	8			
11	9			
12	6			
14	5			
16	8			
17	7			
18	5			
19	5			
20	6			
22	6			
23	2			
Total	71			
Check Total				

CHEM1102	2008-J-2	June 2008	22/06(a)
• Explain in terms of th alkali metals (Group 1	eir electronic configurations 1) are powerful <i>reducing</i> age	and ionisation energies why the nts.	Marks 2
• Compounds of <i>d</i> -bloc notation to represent a are paramagnetic.	k elements are frequently paratomic orbitals, explain why	camagnetic. Using the box most Fe^{2+} and Fe^{3+} compounds	2

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102	2008-J-3	June 2008	22/06(a)
• BF ₃ is a Lewis acid in Lewis acid and draw t	its reaction with diethyl ether. he product of this reaction.	Explain what is meant by a	Marks 2
• What is a catalyst and energy level diagram i	d, in general terms, how does n your answer.	it work? Make reference to an	2
			_
• The gas methane, CH liquefied at 25 °C? Ex	$_{4}$, has a critical point at -82 c splain your answer.	C and 46 atm. Can methane be	2
• Define what is meant involving (i) phosphore	by an "allotrope". Give an exa rus and (ii) a pair not involving	mple of a pair of allotropes phosphorus.	2

CHEM1102	2008-	-J-4 .	June 2008	22/06(a)
• Complete the	e following table. $(en = e^{-1})$	ethylenediamine = NH_2C	CH ₂ CH ₂ NH ₂)	Marks 9
Formula	(NH ₄) ₂ [CoCl ₄]	$[Cr(NH_3)_5(H_2O)]Cl_3$	cis-[PtCl ₂ (en) ₂]	
Oxidation state of transition metal ion				
Coordination number of transition metal ion				
Number of <i>d</i> -electrons in the transition metal ion				
Charge of the complex ion				
Geometry of the complex ion				
List all the ligand donor atoms				

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102	2008-J-	-5	June 2008	22/06(a)
• Calculate the pH of a	0.20 M solution of	of potassium fluoride.	The pK_a of HF is 3.17.	Marks 3
		Answer:		1
• A 300.0 mL solution is 0.79, how many mo solution to raise its pl	of HCl has a pH of oles of sodium ioda H to 2.00?	f 1.22. Given that the ate, NaIO ₃ , would nee	e p K_a of iodic acid, HIO ₃ , ed to be added to this	3
		Answer:		

• Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation. Marks 5

$$2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	[H ₂] ₀ (M)	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	$2.2 imes 10^{-3}$	$2.6 imes 10^{-5}$
2	$1.3 imes 10^{-2}$	$2.2 imes 10^{-3}$	$1.0 imes 10^{-4}$
3	6.4×10^{-3}	4.4×10^{-3}	$5.1 imes 10^{-5}$

Determine the rate law for the reaction.

Calculate the value of the rate constant at 225 $^{\rm o}{\rm C}.$

Answer:

Calculate the rate of appearance of N₂O when [NO] = $[H_2] = 6.6 \times 10^{-3}$ M.

Answer:

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

• Consider the following pairs of compounds. Indicate the isomeric relationship that 8 8			
$H \xrightarrow{CH_3}_{H} H H H \xrightarrow{CH_3}_{H} H \xrightarrow{CH_3}_{H} H$			
$\begin{array}{ccccccccccc} H_{3}C & H_{3}C & CH_{3} \\ H & CH_{3} & H & H \\ (L) & & & & \end{array}$			
$ \begin{array}{cccc} CHO & Br \\ CH_3'' & H \\ H & Br & CH_3 \\ \hline (M) \end{array} $			
$\begin{array}{cccc} CH_3 & CH_3 \\ H - \tilde{C} - CI & H - \tilde{C} - CI \\ H - \tilde{C} - CI & CI - \tilde{C} - H \\ \tilde{C} H_3 & \tilde{C} H_3 \end{array}$ (N)			
Give the name of compound (L) that unambiguously describes its stereochemistry.			
Give the name of compound (\mathbf{M}) that unambiguously describes its stereochemistry.			
Is compound (N) optically active? Give a reason for your answer.			

CHEM1102	2008-J-8	June 2008	22/06(a)
• Complete the following tabl	e. Make sure you indicate a	any relevant stereochemistry.	Marks 7
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
CH ₃ CH ₂ COOH	1. SOCl ₂ 2. CH ₃ CH ₂ OH		
	dry HI		
н−с≡с−сн ₃	excess Br ₂ in CCl ₄ solvent		
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	$\begin{array}{c} O & O \\ \parallel & \parallel \\ CH_3 & O & CH_3 \\ \text{conc. } H_2SO_4 \text{ catalyst} \end{array}$		
$CH_3 - C - Cl$	H_2O		
	1. LiAlH₄ / dry ether 2. H [⊕] / H ₂ O		
	H ₂ / Pd / C		

Marks • Consider the following reaction sequence. 5 A ОН B D E `Cl OHС Ô Clearly state the reagents required (including conditions and solvent where appropriate) for each of the steps. A: **B**: **C**: **D**: E:

Marks • The structure of methyl 4-aminobenzoate, (E), is given below. 5 () **(E)** b H_2N Give the molecular formula of compound (**E**). Name the functional groups in molecule (E) indicated by the boxes "a" and "b". **b**: a: Give the structure(s) of all organic products formed when compound (E) is treated with the following reagents. If no reaction occurs, write "NO REACTION". cold HCl (1 M) hot NaOH (4 M) hot HCl (4 M)

6

• Consider the isomers 1,1-dichloroethane and 1,2 dichloroethane, which can be readily identified by their ¹H NMR spectra.

On the structures below, write the letters \mathbf{a} , \mathbf{b} , \mathbf{c} , *etc*. as necessary to identify each **unique** hydrogen environment giving rise to a signal in the ¹H NMR spectra of these compounds.

Sketch the ¹H NMR spectrum of each compound. Label each signal in the spectra with \mathbf{a} , \mathbf{b} , \mathbf{c} , *etc*. to correspond with your assignments on the diagram above. Make sure you show the splitting pattern (number of fine lines) you expect to see for each signal. Also write the relative number of hydrogens you expect above each signal.

Spectrum of 1,1-dichloroethane

CHEM1102	2008-J-13	June 2008	22/06(a)
Spectrum of 1,2-dichloroethane			
6 ppm		0 ppm	

Marks

2

• The incomplete proposed mechanism for the reaction of 2-methyl-2-butene with HBr is shown below. Complete the mechanism by adding curly arrows to illustrate the bonding changes that take place.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102 - CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbo					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10^{9}	giga	G					
10^{-12}	pico	р								

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^+(\mathrm{aq}) + 2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h v = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$4.5k_{ m B}T = hc/\lambda$	$= (RT/nF) \times \ln K$
$T = 2.898 \times 10^6 / \lambda (\text{nm})$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{k_1} \left(\frac{1}{k_1} - \frac{1}{k_1} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN																	Не
1.008		_															4.003
3	4											5	6	7	8	9	10
Linnow	BERYLLIOM											BORON	С	NIROGEN	OAIGEN	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
1Na 22.99	24.31											AI 26.98	31 28.09	P 30.97	3 2 07	35.45	AF 39.95
19	24.51	21	22	23	24	25	26	27	28	29	30	31	32	33	32.07	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Ph	STRONTIUM	YTTRIUM V	ZIRCONIUM 7r	NIOBIUM	MOLYBDENUM	тесниетии	RUTHENIUM D 11	RHODIUM Ph				INDIUM	Sn Sn	Sh	TELLURIUM	IODINE	XENON X O
KU 85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98 91]	101 07	102.91	106.4	107.87	112 40	114.82	118 69	121.75	127.60	∎ 126.90	131.30
55	56	57-71	72	73	7/	75	76	77	78	70	80	<u>81</u>	82	83	8/	85	86
CAESIUM	BARIUM	57-71	HAFNIUM	T J TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	7 O PLATINUM	GOLD	MERCURY	THALLIUM		BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111							
FRANCIUM Fr			RUTHERFORDIUM Df		SEABORGIUM	BOHRIUM Rh	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM Da							
[223.0]	Na [226.0]		N [261]	DD [262]	5 g	DII [262]	115 [265]	1 VII	[271]	12721							
[223.0]	[220.0]	1	[201]	[202]	[200]	[202]	[205]	[200]	[271]	[2/2]							

PERIODIC TABLI	E OF THE ELEMENTS

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
LANTHANIDES	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]